
W H I T E P A P E R

Doron Pinhas
Chief Technical Officer

Avoiding Hidden High
Availability Recovery Risks

Exploring the Proven Best Practices that Ensure Recoverability

Introduction

Two of the top concerns that IT organizations face are

downtime and data loss. Long gone are the days when

offline recovery of failed components could be considered an

appropriate mitigation approach.

In fact, the cost of downtime and lost data is so steep that

even a mild amount of outage each year will clearly justify a

fairly heavy investment in high availability (HA) and disaster

recovery (DR) solutions. Indeed, most industry analyst

research indicates that the average spending on HA/DR in a

large enterprise is around 7-15% of the total IT budget.

The HA/DR domain, though spanning quite a large number

of technologies, is hardly a new concept; clustering, load-

balancing, replication and storage, to name a few of the

building blocks, have evolved over the years – and most

are extremely reliable and robust. It is therefore somewhat

surprising, if not alarming, to find that despite the significant

adoption of these technologies, downtime and data loss

are still quite common. In fact, there is too little correlation

between the amount of capital investment and human labor

spent and the actual risk reduction.

Though in recent years some new concepts were introduced

to address this challenge, such as grid computing, parallel

(or “real”) clusters, virtualization-based HA/DR, and others,

none has materially solved the issues described.

Rather than depress you, or lead you to the [wrong]

conclusion – that spending in HA/DR is useless – this

paper takes a different approach by analyzing why current

implementations fail, and suggesting best practices that will

help keeping your systems recoverable all the time.

Understanding the Problem

It is best to divide the discussion into three somewhat

overlapping areas:

• Configuration drift

• Cross-domain and cross-vendor integration

• Lack of automation and standardization

Configuration Drift

Configuration drift is, most likely, the one factor that

contributes most to reducing the effectiveness of HA

solutions. Changes to an IT environment are applied on a

daily basis: operating systems, patches, and software are

installed or updated; storage allocations are changed;

kernel, system and networking parameters are adjusted;

hardware configurations (server, network, SAN) are changed

or updated; the list goes on.

Each time a change is made, the IT professional must

consider if there are implications for the HA/DR environment.

In many cases there are, and so action needs to be taken

to keep the environments in synch. Usually it’s a matter

of applying the same change, but not always (as we’ll

discuss later).

This fact, in itself, introduces the risk that some required

changes might be left out. It’s extremely difficult to notice

such discrepancies, especially when multiple teams, such

as storage, server and DBA, must all take part. But even if

the change control processes are perfect, once an update

has been made to all components (e.g., all nodes of the

same cluster), there’s another frustrating asymmetry that

must be faced: most HA solutions involve both passive and

active components. Even when so-called “active-active”

configurations are used, in most cases this is only a means

to improve utilization. For example, application A runs on

2

3

node 1. Node 2 is a standby that does not concurrently run

application A. To better utilize node 2, we may choose to

let it run application B in the meanwhile. And here’s the

asymmetry: we can always tell if the active components

work, simply because they are in use; but what about the

standbys? How can we know they are ready to take over

when needed?

Consider, for example, a cluster standby missing SAN paths

to a shared storage volume, or one missing a correct startup

parameter. This would not be detected unless the failover

process is actively tested. Regretfully, failover testing cannot

happen as frequently as it should, which could leave systems

with hidden vulnerabilities for weeks or months. There’s

more to be said about current testing practices, but this will

be covered in the next section.

In summary, a redundancy environment could easily contain

hidden risks, and the more time that passes between testing

its validity, the more likely it is to fail.

Cross-Domain and Cross-Vendor Integration

To add complexity, an HA system typically incorporates

multiple components, spanning different IT disciplines,

as illustrated in Figure 1, which is a somewhat simplified

diagram.

The Human Factor

Often, more than one subject matter expert is required to

correctly configure the relevant layers. Any miscommunication

might result in hidden discrepancies. For example, wishing

to eliminate any single point of failure in a mission-critical

database, a DBA may configure redundant database control

files, taking care to place each copy on a different filesystem.

However, it may be that all those file systems actually reside

on the same physical SAN volumes – a fact that the DBA

could not readily identify.

The Vendor Angle

Another important aspect adding to the complexity is the

need to use hardware and software from multiple vendors

(storage, server, OS, cluster software, multi-pathing, etc.).

Each vendor will typically publish specific guidelines and

best practices for recommended setting of software and

hardware, minimum required setting and configuration of

other components, and so on. It is not uncommon to find

ambiguous, if not contradicting, instructions.

Lack of Automation and Standardization

Given the diversity of vendors, there is no standard toolkit

for managing HA configurations in a consistent manner

to help avoid configuration drift. Instead, IT administrators

F i g u re 1
P h y s i c a l V i e w R e l a t e d C o n f i g u a t i o n

Storage – SAN pathing, I/O fencing, array configuration, …

Cluster – Service groups, resources, dependencies

Application – Version, parameters, licensing, users, …

OS – Version, level, parameters, LVM, FS, Networking,

licensing, modules, users, …

Server HW – Architecture, capacity, NIC, HBA, …

Network – Topology, redundancy, speed, …

4

must use multiple point-solution tools such as storage

resource management tools (e.g., ECC, HiCommand),

cluster management consoles (e.g., VCS Manager, MSCS

Cluster Manager, HA/CMP Cluster Manager, Oracle

Enterprise manager, etc.), network management tools, server

provisioning tools, and other (e.g., vCenter and SRM in

VMware environments).

Growing awareness of this problem has led some vendors

to introduce new verification tools. While this is a positive

trend, IT professionals should be aware that none of these

solutions can guarantee error-free configuration, and

indeed, all of these tools are limited to the relatively obvious

sanity checks.

An Insight into Configuration Drifts

Over the last six years Continuity Software has invested

significant resources in identifying and classifying

configuration drifts and HA/DR risks. It is impractical to cover

all possible permutations in this paper, even for a single

vendor environment. Instead, this paper will leverage that

knowledge by highlighting the top issues most frequently

encountered in large enterprises worldwide.

As illustrated in Figure 1, these include:

• Cluster-related

• Application-related

• Operating system and hardware

• Network

• Storage and Storage Area Network (SAN)

Cluster-related Configuration Drifts

Setting up a correctly configured cluster is a delicate task.

Even though most vendors will provide a variety of excellent

administration and best practice guides, the volume of

detail and variety of complex configuration options present

significant opportunities for error. Even when thoroughly

tested and validated, clusters can easily become unstable as

a result of routine maintenance, hiding many configuration

drifts that might result in either unplanned downtime or data

loss in the moment of truth.

Here are the most frequently reported risk areas:

• �Storage access – As more shared storage volumes are

added, there is a chance that some of the standbys will not

have correct SAN access. It is extremely difficult to notice

such discrepancies, especially since standby nodes usually

refrain from using shared storage resources until they need

to take over. Even if all devices are accessible, you must

pay attention to verifying that standby nodes have the

same number of configured SAN I/O paths as well as the

same redundancy setting. It is also advisable to monitor

path availability. Poor performance after a failover is often

associated with a standby having less available I/O paths

than the formerly active node.

• �Degraded mode / bad state – Clusters usually keep

track of their state, as it may change from the optimum.

Some state changes could be the result of an unnoticed

degradation in some of the components (e.g., faulty or

“noisy” Ethernet adapters). Others could be the result

of incomplete maintenance activity (e.g., standby was

suspended, or “frozen” to allow an upgrade, but was not

brought back to normal state). Correctly monitoring your

cluster state could save hours of unplanned downtime.

Certain states are particularly dangerous, as they might

lead to a “split brain” scenario, in which the standby

decides to take over even though the primary is fully

5

active. This usually results in complete data loss. Take

particular care monitoring cluster heartbeat and I/O fencing

configuration correctness

• �Incorrect resource configuration – Most clusters have

no easy way of identifying whether a configuration file/

repository on one of the nodes is different than the others.

Make sure to compare them periodically.

• �Cluster resource to physical resource mismatch – It is not

uncommon to find cluster resources that point to a non-

existing physical resource such as a missing mount-point

[UNIX] or the wrong drive letter [Windows], the wrong

Ethernet adapter, etc.

• �Quorum / I/O fending device – Incorrect access to Quorum

devices might result in the “split brain” scenario. Make

a habit of verifying the devices are visible. (See “Testing,

Auditing and Automation” below.)

• �Storage control devices – This is an often overlooked

area. Many storage arrays (e.g., Symmetrix, HDS) will

allow a standby to take over shared devices only if it

can communicate with the array. Usually, you need to

present a host with at least one storage control device per

concurrent operation. If you have too few control devices

assigned to a host, it might hang during an attempt to take

over multiple resources. Consult your cluster admin guide to

determine the right number of devices to configure

Application-related Configuration Drifts

Most clusters do not share application binaries and

configuration files. When these are updated, you must

remember to perform the same maintenance operations on

all cluster nodes, which might result in configuration drift. It

is a good practice to periodically audit your configuration to

verify you have:

• Same installed versions /patches

• Identical or compatible configuration files

• License information

• Network objects: listening port, listener configuration

• �All application data on shared storage. (In geo-clusters,

also make sure it is also on replicated storage, as some

storage resources are private to a local cluster and others

are global.)

Operating System and Hardware Configuration Drift

Periodically verify your cluster nodes have similar

configuration. In large environments you might be surprised

at some of the differences you will find:

• Hardware resources (memory, CPU)

• OS version, patches, licensing

• �Installed system utilities, such as LVM, multi-pathing,

storage and HBA utilities

• �Kernel configuration (e.g., you have increased I/O queue

depth or number of max processes on some nodes,

but not all)

• �Network services (e.g., time, DNS) - In geo-cluster or

metro-cluster configurations make sure that nodes point to

a local service (e.g., to a local DNS server rather than to the

same DNS server as nodes on the other site).

• �Networked storage – Make sure that critical mounted

networked file systems are accessible by all nodes (with the

same options, mode, permission, protocol version, etc.).

Pay attention to geo or campus clusters, as you should

keep each node pointing at local resources.

• �HBA and multi-pathing configuration differences

Network Configuration Drifts

• �Link / team speed, mode (e.g., 2 teamed 1Gbps Ethernet

adapters in one node vs. 1 100Mbps link in another)

• �Hidden single point of failure (e.g., both private or public

links on the same switch / VLAN)

• �Low level / low latency stack issues (e.g., LLC, serial

heartbeat):

6

- Misconfiguration

- Some are non-routable

• �Firewall configuration – Make sure internal firewalls have

the same ports allowed. External firewalls should allow

same access rights to all cluster nodes.

Storage and SAN Configuration Drifts

• �Missing SAN access to shared devices as a result of zoning

or masking misconfiguration

• Non-redundant SAN I/O paths

• �SAN security – A non-cluster member that has access to a

shared storage device. This is a relatively vulnerable spot;

storage team should periodically verify that only valid

cluster nodes can access cluster volumes.

• �Replication issues in geo-clusters – Make sure all data is

replicated. If you are using more than one storage volume,

make sure all volumes are on the same storage consistency

group.

• �Mixed storage tiers – It is highly recommended to make

sure all shared storage devices are based on the same

storage architecture and tier.

Best Practices for Improving Your Readiness

Continuity Software’s close work with hundreds of very large

enterprises exposes us to a variety of HA/DR management

standards and approaches. IT shops that have the most

successful HA environments have the following in common:

• Testing and testing automation

• Standardization

• Culture

Testing, Auditing and Automation

Frequently testing and auditing your HA configurations

is perhaps the single most important factor in ensuring

successful recovery.

The most effective approach requires rotating your active

nodes regularly and frequently (e.g., fail-over to a different

node each weekend, and let it run in production the

following week). Unfortunately, this approach is appropriate

in less than 5% of the environments. In the rest, it is deemed

impossible or impractical mainly due to one of the following

two reasons:

1. �Fail-over is still risky and involves downtime, and therefore

requires business approval, which can simply not be

granted that frequently.

2. �Production and standby systems are not always fully

symmetrical. For example:

	 • �Standbys have less capacity, so you cannot afford

to let them run your production applications for the

entire week.

	 • �Standbys are located in sites with sub-optimal

network (bandwidth, response times).

	 • �Standbys are installed with less critical applications

(e.g., development or testing) that cannot be also

installed on the primaries, rendering server rotation

impractical.

For those systems that cannot rotate between servers, the

most successful approach relies on automated configuration

auditing. This involves either using a dedicated tool, such

as RecoverGuard (described briefly at the end of this

publication) or a set of custom, home-grown scripts. Here

are some guidelines for a successful auditing environment:

• �As a minimum, automate the collection of relevant

configuration items (hardware, OS and software

configuration, storage allocation, cluster configuration,

networking configuration, etc.). Automatic data collection

can dramatically reduce the time and effort involved in

testing, auditing, and preparation for future downtime.

Without regularly collected configuration data, it is almost

impossible to perform post-mortem analysis when actual

downtime does occur.

7

• �The next level, which could prove more difficult to reach

unless dedicated tools are used, is to automatically

search for known vulnerabilities, such as those previously

described. Being non-intrusive in nature, automated audits

can be run every day.

Finally, some cluster tools offer the ability to automate, or

“Fire drill”, cluster fail-over (e.g., VCS Fire Drill, CA XOsoft

Disaster Recovery Fire Drill). The idea is to create a snapshot

of the actual cluster data, and initiate a fail-over simulation

that brings up an instance of the protected application on

the standby environment using that snapshot in an isolated

network environment. This allows you to identify certain

configuration drifts without disrupting your production

applications. Note, though, that automated fire drills are not,

in themselves, sufficient to prove the validity of the fail-over

process, and must always be complemented by automated

auditing and/or full fail-over, since they have the following

shortcomings:

• �Automated fire drills will not test your systems under

full load, causing you to miss configuration gaps such as

insufficient resources, I/O paths, kernel parameters, etc.

• �Automated fire drills will not test network configuration,

since they operate in an isolated environment.

• �Automated fire drills do not use real storage, and therefore

will not detect storage connectivity issues.

• �And, finally, automated fire drills will not detect certain

cluster configuration discrepancies leading to split-brain

scenarios (see examples in previous sections).

Standardization

The best run IT shops minimize the number of possible HA

configurations, and strive to standardize and re-use the same

design patterns, such as standardizing Windows clusters to

either MSCS or VCS, using the same storage architecture

with all clusters, using the same software versions and patch-

levels on all clusters, and so forth.

When possible, it is also recommended to use the same,

internally certified, “golden image” to template all your

cluster nodes.

Finally, it is important to document and publish your

standards to facilitate consistency of future HA systems.

Some important areas to include are:

• �Minimum hardware requirements (power, internal disks,

NICs, HBAs and ports)

• �Networking standards (e.g., private vs. public network

requirements, proprietary low-latency protocol

configuration, firewall requirements)

• �Software requirements, identifying exact versions required,

if possible (e.g., cluster software, multi-pathing software,

custom storage agents and CLIs, runtime frameworks, etc.)

• �Storage requirements (e.g., multi-pathing, zoning and

masking guidelines, control device requirements and best

practices)

• �Naming convention (for nodes, virtual IPs, services, etc.)

Culture

Another interesting common trait of enterprises with effective

HA is a cross-domain culture. A successful implementation

requires correct configuration of network, storage, server and

often database as well. Continuity’s experience indicates that

deployment predominated by just one team (often the server

group only) are usually more error prone; without getting

other teams educated and engaged, sub-optimal or even

incorrect configurations might be reached.

We recommend forming an HA committee, that will:

• Include members from all relevant teams

• �Make sure all teams have a high degree of education on

HA principles and technical requirements

• �Jointly design and periodically review HA architectures and

configurations

• Jointly define auditing and testing goals

8

Many organizations new to this concept are skeptical at first,

and are primarily concerned that this process is ineffective, or

a waste of time. In reality, once geared up, there is very little

overhead. A one-hour team review each month will usually

suffice, except when new designs or architecture refresh

processes are in motion. The payoffs far outweigh the time

invested: better communication and increased awareness

translates to more efficient deployments and dramatically

reduced time to resolve issues should they occur.

HA Validation Automation and RecoverGuard

As discussed earlier, the single most important factor for

improving your HA environment readiness is automated

testing and auditing. Writing your own scripts, while a valid

approach, is often difficult and limited because:

• �It requires writing and debugging a large number of scripts

(some relatively complex).

• �You need to make sure you configure and run the scripts

on all relevant hosts (existing and new).

• �You are limited to what your own experience teaches you.

• �Personnel changes could render the most skillfully designed

scripts impossible to maintain.

RecoverGuard offers an alternative approach which can

prove more cost-effective and much more comprehensive

than homegrown solutions.

RecoverGuard is an agent-less technology that requires a

single, dedicated server to run on. Setting up the tool is

extremely streamlined, and could be accomplished in a single

afternoon. At the end of this process you can configure

RecoverGuard to scan your environment for vulnerabilities

every day. During the scan, RecoverGuard will:

• �Automatically discover your servers, clusters, storage

arrays, SAN configuration, replication configuration,

database configuration and more.

• �Collect detailed configuration information from all the

layers discussed in this paper, store the data in a central

repository, track change history, and allow flexible

reporting.

• �Automatically test the validity of your HA configuration

using a risk-detection knowledgebase that contains more

than 4,000 different signatures (each one is the equivalent

of a custom script). All the samples of configuration drifts

described in this paper (and many more) are already part of

the knowledgebase.

• �Present identified risks in a detailed, actionable format,

including a graphical diagram of the faulty environment,

detailed description of the root cause, detailed remediation

instructions and much more.

• �Reference knowledgebase that is automatically updated

with new signatures on a weekly basis. Continuity works

closely with hundreds of other large enterprises and all

leading vendors to constantly include new best practices in

the knowledgebase.

The benefits of using RecoverGuard are numerous:

• �Comprehensive, daily analysis of your environment, the

equivalent of running a full HA/DR audit every day.

• �Captures the industry and community accumulated

experience. You will never have to suffer from a

configuration drift that has already been identified by

other organizations.

• �Dramatically reduces downtime by detecting

configuration drifts as they occur, receiving expert advice

on how to fix them, and keeping your environment

consistent and recoverable.

• �Dramatically reduces labor associated with documenting,

auditing and testing your environment.

Additional Resources

www.continuitysoftware.com

 5 Penn Plaza | 23rd Floor | New York, NY 10001 | www.continuitysoftware.com
T: 646.216.8628 888.782.8170 | F: 646.290.6706

Copyright © 2010. Continuity Software Inc. All rights reserved. RecoverGuard is a trademark of Continuity Software, Inc.
All other trademarks are the properties of their respective owners.

About the Author

Doron Pinhas is a respected industry professional

with 20 years of experience in data and storage

management, high availability, real-time applications,

operating system design and development, and open

system and networking architecture engineering. He has

served as Continuity Software’s CTO since joining the

company in 2005. Previously he had been a driving force

at Xpert Integrated Systems, a leading Israeli system

integrator, first as its Chief Operating Officer and later

forming and heading its Business Continuity Solutions

division. Prior to joining Xpert, Doron served in the

Israeli Defense Force for 10 years as a system architect

for mission critical information systems, retiring with the

rank of Major.

About Continuity Software

Continuity Software™ is a leading provider of

disaster recovery (DR) and high availability (HA)

management solutions. Its RecoverGuard™ software

mitigates data protection and high availability risks by

detecting gaps and vulnerabilities between customers’

primary production, HA and remote DR sites. With

RecoverGuard, customers can now confidently validate

and ensure their business continuity strategy. For further

information, please visit: www.continuitysoftware.com,

email: info@continuitysoftware.com, or call: 888-782-

8170 (United States) or +972 (3) 6470888 (Israel).

